Regression- Based Inference in Linear Time Series Models with Incomplete Dynamics
نویسنده
چکیده
) Regression-based heteroskedasticity and serial correlation robust standard errors and specification tests are proposed for linear models that may not represent an expectation conditional on all past information. The statistics are computable via a sequence of linear regressions, and the procedures apply to models estimated by ordinary least squares or two stage least squares. Examples of the specification tests include tests for nonlinearities in static models, exclusion restriction tests in finite distributed lag models, heteroskedasticity/serial correlation-robust Chow tests, tests for endogeneity, and tests of overidentifying restrictions. Some new tests of the assumptions underlying Cochrane-Orcutt estimation are also proposed, and some considerations when applying the various robust tests are discussed.
منابع مشابه
Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملA comparative QSAR study of aryl-substituted isobenzofuran-1(3H)-ones inhibitors
A comparative workflow, including linear and non-linear QSAR models, was carried out to evaluate the predictive accuracy of models and predict the inhibition activity of a series of aryl-substituted isobenzofuran-1(3H)-ones. The data set consisted of 34 compounds was classified into the training and test sets, randomly. Molecular descriptors were selected using the genetic algorithm (GA) as a f...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011